

VOLUME 54, NUMBER 6

MARCH 17, 1989

© Copyright 1989 by the American Chemical Society

## Communications

## Dichloroisopropoxytitanium Nitronates as Reagents for Stereoselective Henry Reactions

Summary: Alkyl nitronates were reacted with aldehydes in the presence of isopropoxytitanium trichloride to give erythro  $\beta$ -nitro alcohols.

Sir: The Henry or nitro aldol reaction is one of the classical bond-forming processes in organic chemistry. However, until recently the problem of stereocontrol in this process had been largely neglected. Seebach<sup>1,2</sup> reported that  $\alpha, \alpha$ -doubly deprotonated nitroalkanes 1 reacted with aldehydes to give the intermediate nitronate alkoxides 2 (Chart I). Kinetic reprotonation at -100 °C in polar solvents (THF with HMPA or DMPU) gave the nitro alcohols enriched in the three diastereoisomer 3 (18:7-47:3). In contrast, reprotonation of the tert-butyldimethylsilyl-protected nitronate anions 4 at -100 °C in THF solution gave  $\beta$ -[(tert-butyldimethylsilyl)oxy]nitroalkanes 5 enriched in the erythro diastereoisomer (41:9-19:1). High erythro selectivity (4:1->19:1) was also observed<sup>2</sup> in the fluoride-catalyzed reaction of silyl nitronates 6 with aldehydes, although the experimental conditions were critically precise for success. In addition to Seebach's studies, Hanessian<sup>3</sup> has observed some variation in selectivity in the reaction of (S)-(benzyloxy)propionaldehyde with methyl 3-nitropropionate using zinc or magnesium salts and potassium tert-butoxide in THF. Since nitro alcohols can be hydrogenated over Raney nickel with retention of configuration,<sup>4</sup> they are useful intermediates in the elaboration of pharmacologically important  $\beta$ -amino alcohol<sup>5</sup> derivatives including chloramphenicol (7), ephedrine (8a) and norephedrine (8b).

As part of our studies on the chemistry of nitroalkanes and nitroalkenes,<sup>6</sup> we have discovered an experimentally

Synthesis; J. Wiley and Sons: New York, 1975.
(6) Barrett, A. G. M.; Graboski, G. G.; Russell, M. A. J. Org. Chem.
1986, 51, 1012. Barrett, A. G. M.; Graboski, G. G.; Russell, M. A. Ibid. 1985, 50, 2603.

Modifications SiMe,t-Bi O,SiMe,t-BL ŃO, 5 CH Sa R = 8h 8 = ŇНЯ HCOCHCI

Chart I. All Structures except 7 and 8 Refer to Racemic

Table I. Reaction of Alkyl Nitronates with p-Nitrobenzaldehyde

| nitroalkane                                                                       | yield, %<br>(isolated erythro<br>isomer, %) | erythro:threo<br>ratio <sup>a,b</sup> |
|-----------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|
| a CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> CH <sub>2</sub> NO <sub>2</sub> | 81                                          | 3.9:1                                 |
| <b>b</b> $EtO_2C(CH_2)_2CH_2NO_2$                                                 | 72                                          | 7:1                                   |
| c THPOCH <sub>2</sub> CH <sub>2</sub> NO <sub>2</sub>                             | 83                                          | 4:1                                   |
| d CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> NO <sub>2</sub>                 | 72 (60)                                     | 7:1                                   |

<sup>a</sup> Determined from the <sup>1</sup>H NMR spectrum of the crude product.<sup>1</sup> <sup>b</sup>All new compounds were fully authenticated by spectroscopic data and microanalyses or high resolution mass spectra.

simple procedure for stereoselectively preparing erythro  $\beta$ -nitro alcohols. Thus the alkyl nitronates 9, formed by the action of *n*-butyllithium on nitroalkanes in THF solution, reacted with aldehydes in the presence of TiCl<sub>3</sub>-(OPr<sup>i</sup>) at room temperature to give the  $\beta$ -nitro alcohols enriched in the erythro diastereoisomer 10 (Tables I and It is clear from these results that the method is II).

<sup>(1)</sup> Seebach, D.; Beck, A. K.; Mukhopadhyay, T.; Thomas, E. Helv. Chim. Acta 1982, 65, 1101.

<sup>(2)</sup> Eyer, M.; Seebach, D. J. Am. Chem. Soc. 1985, 107, 3601.

<sup>(2)</sup> Eyer, M.; Seebach, D. J. Am. Chem. Soc. 1985, 107, 3601.
(3) Hanessian, S.; Kloss, J. Tetrahedron Lett. 1985, 26, 1261.
(4) Bordwell, F. G.; Gabrisch, E. W. J. Org. Chem. 1963, 28, 1765.
Bordwell, F. G.; Arnold, R. L. Ibid. 1962, 27, 4426. Nielsen, A. T. Ibid.
1962, 27, 1998. Sunberg, R. J.; Buckowick, P. A. Ibid. 1968, 33, 4098.
Bordwell, F. G.; Biranowski, J. B. Ibid. 1967, 32, 629.
(5) Lednicer, D. A.; Mitscher, L. A. The Organic Chemistry of Drug
Sunthesis: J. Wiley and Song. New York 1975.

Table II. Reaction of the Nitropropane Anion with Aldehydes

|                                                          |              | yield, %  |                    |
|----------------------------------------------------------|--------------|-----------|--------------------|
|                                                          |              | (isolated |                    |
|                                                          |              | erythro   |                    |
|                                                          | no. of equiv | isomer,   | erythro:threo      |
| aldehyde                                                 | of nitronate | %)        | ratio              |
| a $p$ -NO <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CHO | 1            | 50        | 5.6:1 <sup>c</sup> |
|                                                          | 2            | 72 (60)   | 7:1°               |
| b PhCHO                                                  | 1            | 41        | 4.6:1              |
|                                                          | 2            | 61        | 6:1                |
| c p-MeOC <sub>6</sub> H <sub>4</sub> CHO                 | 1            | 21        | 1.7:1              |
|                                                          | 2            | 47        | 3.4:1              |
| d o-NO <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CHO    | 1            | 46        | 9.4:1°             |
|                                                          | 2            | 65 (46)   | 6:1°               |
| e o-CF <sub>3</sub> C <sub>6</sub> H <sub>4</sub> CHO    | 1            | 38        | 7.3:1              |
|                                                          | 2            | 57 (42)   | $6.7:1^{d}$        |
| $f p-MeO_2CC_6H_4CHO$                                    | 1            | 45        | 11.2:1°            |
|                                                          | 2            | 71 (41)   | 5.7:1°             |
| g $\beta$ -naphthaldehyde                                | 2            | 61 (29)   | 4.9:1 <sup>d</sup> |
| h(E)-cinnamaldehyde                                      | 2            | 43        | $8:1^{d}$          |
| i CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub> CHO    | 1            | 13        | 3.8:1 <sup>e</sup> |
|                                                          | 2            | 28        | 3.8:1 <sup>e</sup> |
| j CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> CHO    | 2            | 27        | 2.9:1 <sup>e</sup> |
| k t-BuCHO                                                | 2            | 0         |                    |
| 1 MeO <sub>2</sub> CCHO                                  | 2            | 36        | 1:1 <sup>e</sup>   |

<sup>a</sup>Determined from the <sup>1</sup>H NMR spectrum of crude product.<sup>1</sup>  $^{b}$  All new compounds were fully authenticated by spectroscopic data and microanalyses or high resolution mass spectra. <sup>c</sup>Recrystallization gave a single diastereoisomer. <sup>d</sup>Chromatography gave a single diastereoisomer. The ratio was determined by the <sup>13</sup>C NMR spectrum of the crude product.<sup>1</sup> <sup>e</sup> Determined by the <sup>13</sup>C NMR spectrum of the isolated  $\beta$ -nitro alcohol fraction.

particularly useful for electron-deficient aromatic aldehydes.<sup>7</sup> In contrast, the method is not efficient with aliphatic aldehydes, probably a consequence of competitive aldol chemistry.<sup>8</sup> There is a bizarre twist to this titanium-mediated Henry reaction. The nitronate 9 ( $R^1$  = THPOCH<sub>2</sub>) was found to react with isopropoxytitanium trichloride and benzaldehyde at -78 °C for 1 h to produce predominantely (9:1) the three diastereoisomer 3 ( $R^1$  = THPOCH<sub>2</sub>,  $R_2 = Ph$ ), although the conversion was low

 $(\sim 5\%)$ . It is reasonable to speculate that both the lower temperature three-selective and higher temperature ( $\geq -30$ °C) erythro-selective processes are both kinetically controlled reactions via different titanium nitronate oligomers.<sup>9</sup> The higher temperature selectivity is not merely the result of threo-erythro equilibration.<sup>10</sup> Variation in quench conditions showed no observable changes in the product selectivity. The nitro alcohols are, however, stable to the reaction conditions.<sup>11</sup> Early results with (<sup>n</sup>BuO)<sub>3</sub>ZrCl, EtAlCl<sub>2</sub>, and TiCl<sub>2</sub>(OPr<sup>i</sup>)<sub>2</sub> showed similar selectivities.

A typical procedure is as follows: n-BuLi (1.6M in hexane, 6.24 mL) was added dropwise with stirring to a solution of the nitroalkane (10 mmol) in THF (12 mL) at -78 °C. After 15 min a solution of TiCl<sub>3</sub>(OPr<sup>i</sup>) (5 mmol) in THF (2 mL) and CH<sub>2</sub>Cl<sub>2</sub> (3 mL) solution was added. After an additional 15 min, the aldehyde (5 mmol) was added and the mixture allowed to warm up to room temperature ( $\sim 30 \text{ min}$ ). Stirring was continued for a further 3.5 h at room temperature and the mixture was guenched with an aqueous slurry of disodium EDTA (1.86 g, 5 mmol) and extracted with  $Et_2O$  (3 × 75 mL). The combined  $Et_2O$ fractions were washed with dilute hydrochloric acid (2 M, 75 mL), aqueous sodium bicarbonate (75 mL), and water (75 mL), dried, and evaporated in vacuo. Flash column chromatography using  $Et_2O$ /hexanes gave the pure nitro alcohols.

Acknowledgment. We thank W. R. Grace and Company for their generous support of this research.

## Anthony G. M. Barrett,\* Chantal Robyr **Christopher D. Spilling**

Northwestern Universitv College of Arts and Sciences Department of Chemistry 2145 Sheridan Road Evanston, Illinois 60208 Received June 23, 1988

## Free Radical Cyclization of Thionocarbonic Acid Derivatives of 4-Phenyl-3-butenol. A New **Route to Thionolactones**

Summary: Treatment of various thionocarbonic acid derivatives of 4-phenyl-3-butenol with tri-n-butyltin hydride and AIBN in boiling benzene provides thionolactones and lactones in good yields via a free radical chain reaction.

Sir: The use of free radical reactions in the synthesis of complex functionalized molecules has recently become widespread.<sup>1</sup> In 1986 we reported a novel method for the preparation of  $\alpha$ -alkylidene  $\gamma$ -lactones.<sup>2</sup> This method involves the intramolecular addition of alkoxycarbonyl



radicals onto a carbon-carbon triple bond (eq 1). This cyclization reaction is readily extended to the synthesis of other lactones; for example Se-phenyl selenocarbonates of alk-3-enols and alk-4-enols yield  $\gamma$ - and  $\delta$ -lactones, re-

<sup>(7)</sup> The yields reflect the conversion: remaining starting materials may be recovered by chromatography. Increasing the reaction time leads to better conversions.

<sup>(8)</sup> Titanium tetrachloride and derived alkoxides have been used in controlling the diastereoselectivities of many carbonyl addition reactions including the aldol reaction. Reetz, M. T. Organotitanium Reagents in Organic Synthesis; Springer-Verlag: Berlin, 1986; p 149.

<sup>(9)</sup> Erythro selectivity was observed at temperatures as low as -30 °C, although conversions are superior at 25 °C.

<sup>(10)</sup> The product ratio is clearly not that observed for isolated nitro alcohols under equilibrating conditions, see ref 1.

<sup>(11)</sup> Pure erythro-2-nitro-1-(2-nitrophenyl)-1-butanol (10 mol %) was recovered unchanged when added to a reacting mixture of 1-nitropropane and 2-(trifluoromethyl)benzaldehyde. In the same way, pure *threo*-2-nitro-1-phenyl-3-(tetrahydro-2-pyranyloxy)-1-propanol (10 mol %) was recovered unchanged when added to a reacting mixture of 2-nitrobenzaldehyde and 1-nitropropane.

For reviews, see: (a) Hart, D. J. Science 1984, 223, 883. (b) Giese,
 B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds;
 Pergammon Press: Oxford, 1986. (c) Ramaiah, M. Tetrahedron 1987,
 43, 3541. (d) Curran, D. P. Synthesis 1988, 417 and 489.
 (2) Bachi, M. D.; Bosch, E. Tetrahedron Lett. 1986, 27, 641.